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Al Let mg and ng be distinct positive integers. For every
positive integer k, define my, and ny to be the relatively
prime positive integers such that

me  2my g+ 1
ny o 2np_1+1 '

Prove that 2my + 1 and 2ny + 1 are relatively prime for
all but finitely many positive integers k.

A2 Find the largest real number a and the smallest real
number b such that

ax(m—x) < sinx < bx(w —x)
for all x in the interval [0, 7].

A3 Alice and Bob play a game with a string of n digits, each
of which is restricted to be 0, 1, or 2. Initially all the
digits are 0. A legal move is to add or subtract 1 from
one digit to create a new string that has not appeared
before. A player with no legal move loses, and the other
player wins. Alice goes first, and the players alternate
moves. For each n > 1, determine which player has a
strategy that guarantees winning.

A4 Find the minimal value of k such that there exist k-by-k
real matrices Ay, ...,Asqps with the property that A;A; =
AjA; if and only if |i — j| € {0,1,2024}.

A5 Let n be an integer with n > 2. For a sequence s =
($1,...,8,—1) where each s; = +1, let f(s) be the num-
ber of permutations (aj,...,a,) of {1,2,...,n} such
that s;(a;+1 —a;) > 0 for all i. For each n, determine
the sequences s for which f(s) is maximal.

A6 Let bg = 0 and, for n > 0, define b, 1| = Zbﬁ +b,+ 1.
For each k > 1, show that b1 — 2byx is divisible by
22k+2 but not by 22++3,

B1 Suppose that each point in the plane is colored either red
or green, subject to the following condition: For every
three noncollinear points A, B,C of the same color, the

center of the circle passing through A,B and C is also
this color. Prove that all points of the plane are the same
color.

B2 Let f: [0, 1] — [0,0) be strictly increasing and continu-
ous. Let R be the region bounded by x =0,x =1,y =0,
and y = f(x). Let x; be the x-coordinate of the centroid
of R. Let x; be the x-coordinate of the centroid of the
solid generated by rotating R around the x-axis. Prove
that x| < xp.

B3 Suppose S is a nonempty set of positive integers with
the property that if » is in S, then every positive divi-
sor of 2025" — 15" is in S. Must S contain all positive
integers?

B4 Forn>2,letA=[q; j]f’ -1 be an n-by-n matrix of non-
negative integers such that

(a) a;j=0wheni+j<n;
(b) aiy1,j € {a,-.j,a,',j—&—l} whenl1<i<n—1land1<
Jj <n;and
(c) aij+1 € {aiyj,a,-‘,j—&— 1} when 1 <i<nand1<j<
n—1.
Let S be the sum of the entries of A, and let N be the
number of nonzero entries of A. Prove that

(n+2)N.

S <
- 3

BS5 Let p be a prime number greater than 3. For each k €
{1,...,p—1}, let I(k) € {1,2,...,p— 1} be such that
k-I(k) =1 (mod p). Prove that the number of integers
ke {l,...,p—2} such that I(k+ 1) < I(k) is greater
than p/4 —1.

B6 Let N={1,2,3,...}. Find the largest real constant r
such that there exists a function g: N — N such that

gn+1)—g(n) > (g(g(n)))"

forall n € N.



